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Abstract— Deep learning has in recent years brought 
breakthroughs in several domains, most notably voice and image 
recognition. In this work we extend deep learning into a new 
application domain - namely classification on mobile phone 
datasets. Classic machine learning methods have produced good 
results in telecom prediction tasks, but are underutilized due to 
resource-intensive and domain-specific feature engineering. 
Moreover, traditional machine learning algorithms require 
separate feature engineering in different countries. In this work, 
we show how socio-economic status in large de-identified mobile 
phone datasets can be accurately classified using deep learning, 
thus avoiding the cumbersome and manual feature engineering 
process.  We implement a simple deep learning architecture and 
compare it with traditional data mining models as our 
benchmarks. On average our model achieves 77% AUC on test 
data using location traces as the sole input. In contrast, the 
benchmarked state-of-the-art data mining models include various 
feature categories such as basic phone usage, top-up pattern, 
handset type, social network structure and individual mobility. 
The traditional machine learning models achieve 72% AUC in 
the best-case scenario. We believe these results are encouraging 
since average regional household income is an important input to 
a wide range of economic policies. In underdeveloped countries 
reliable statistics of income is often lacking, not frequently 
updated, and is rarely fine-grained to sub-regions of the country. 
Making income prediction simpler and more efficient can be of 
great help to policy makers and charity organizations – which 
will ultimately benefit the poor. 
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I.  INTRODUCTION  
Recent advances in Deep Learning [1][2] have made it 

possible to extract high-level features from raw sensory data, 
leading to breakthroughs in computer vision [9][10][11] and 
speech recognition [12][13]. It seems natural to ask whether 
similar techniques could also be beneficial for useful 
prediction tasks on mobile phone data, where classic machine 
learning algorithms are often under-utilized due to time-
consuming country and domain- specific feature engineering 
[6].  

Our work investigates how we can separate individuals with 
high and low socio-economic status using mobile phone call 
detail records (CDR). Finding good proxies for income in 
mobile phone data could lead to better poverty prediction – 
which could ultimately lead to more efficient policies for 
addressing extreme poverty in hardest hit regions. 

With this in mind, we perform a large-scale country-
representative survey in a low HDI Asian country, where 
household income is collected from approximately 80 000 
individuals. The individual records are de-identified and 
coupled with raw mobile phone data that span over 3 months. 
This dataset allow us to build a deep learning model, as well 
as a benchmarking model using custom feature engineering 
and traditional data mining algorithms.   

From the household income we derive two binary 
classifiers (1) below or above median household income and 
(2) below or above upper poverty level.  The income threshold 
for poverty level is derived from official statistics and based 
on average national household income and household size. 
Our survey classifies participants into 13 household income 
bins – where bin 1 and 2 correspond to below upper poverty 
level.  

The rest of this paper is organized as follows: In section 2 
we describe the features and models used for benchmarking 
our deep learning approach.  Section 3 describes the deep 
learning approach itself.  In section 4 we compare the results 
of the two approaches. Finally, we draw our conclusions in 
section 5.    

II. BEST PRACTICE – TRADITIONAL DATA MINING 
 

This section describes the features and the standard 
machine learning algorithms used as our benchmark.  The data 
preparation phase in the data mining process is a tedious task, 
that requires specific knowledge about both the local market 
and the various data channels as potential sources for input 
features.  Typically the data warehouse architecture and the 
data format vary between the operators and third-party 
software packages, making it hard to create generalizable 
feature-sets. 

A. Features  
We build a structured dataset consisting of 150 features 

from 7 different feature families, see Table 1. The features are 
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FIGURE 1 LOCATION ACTIVITY MAP. THE MAP PROVIDES 
INFORMATION ABOUT EACH USERS’ TOWER ACTIVITY. 

 

 

custom-made and range from basic phone usage, top-up 
pattern, social network and mobility to handset usage. The 
features include various parameters of the corresponding 
distributions such as weekly or monthly median, mean and 
variance.  

 

TABLE 1 SAMPLE FEATURES USED IN TRADITIONAL 
MACHINE LEARNING BENCHMARKS.  

 Feature family Feature examples  

 Basic phone usage Outgoing/incoming voice duration, sms count 
etc.   

 Top-up transactions Spending speed, recharge amount per 
transaction, fraction of lowest/highest 
recharge amount, coefficient of variation 
recharge amount etc 

 Location/mobility Home district/tower, radius of gyration, 
entropy of places, number of places etc. 

 Social Network Interaction per contact, degree, entropy of 
contacts etc. 

 Handset type Brand, manufacturer, camera enabled, 
smart/feature/basic phone etc 

 Revenue Charge of outgoing/incoming SMS, MMS, 
voice, video, value added sevices, roaming, 
internet etc.  

 Advanced phone 
usage 

Internet volume/count, MMS count, video 
count/duration, value added services 
duration/count etc.  

 

A. Models 
Ensemble methods have been proven as powerful 

algorithms when applied to large-scale telecom datasets 
[14][6]. They combine predictions of several base classifiers 
built with a given learning algorithm in order to improve 
robustness over a single classifier. We investigate two different 
state-of-the-art ensemble methods:  

1) Random forest, where we build several independent 
classifiers and average their predictions, thus reducing the 
variance.  We choose grid search to optimize the tree size.  

2) Gradient boosting machines (GBM) where the base 
classifiers are built sequentially. The algorithm combines the 
new classifier with ones from previous iterations in an attempt 
to reduce the overall error rate. The main motivation is to 
combine several weak models to produce a powerful 
ensemble.    
 
In our set-up, each model is trained and tested using a 75/25 
split. For the response variable related to poverty level we 
introduce misclassfication cost. Since few people are below 
the poverty level (minority class), a naive model will predict 
everyone above poverty line.  We therefore apply a 
misclassification cost to the minority class to achieve fewer 
false positives and adjust for the ratio between the classes. 

 

III. DEEP LEARNING 
 

In this section we describe the input data and the structure 
of our deep learning model.   

 

B. Features 
Classification results of the traditional learning algorithms 

are inherently limited in performance by the quality of the 
extracted features [7]. Deep learning can instead reproduce 
complicated functions that  represent higher level extractions, 
and replace manual domain-specific feature engineering.  

Earlier studies have shown a good correlation between 
location/human mobility and socio-economic levels [15-17]. 
Using this as a motivation we build a simple vector whose 
length corresponds to the number of mobile towers (8100 
dimensions), and the vector elements correspond to the mobile 
phone activity at the given tower – shown in Table 2.  

TABLE 2 INPUT VECTORS TO DL ALGORITHM BEFORE 
NORMALIZATION 

Hashed 
Phone 
number 

Tower
1  

Tower2  …. Tower8100  Below/above 
poverty level  

1 0 67 …. 16 0 

2 7 0 …. 0 1 

. 

. 

. 

. 

. 

. 

…. . 

. 

. 

. 

80K 0 9 …. 6 0 

 

A visual representation of Table 2 can be seen in Fig 1, 
where each subscriber is represented by a location density map.   

 

A. Models 
We use a standard multi-layer feedforward architecture 

where the weighted combination of the n input signals is 
aggregated, and an output signal f(α) is transmitted by the 
connected neuron. The function f used for the nonlinear 
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FIGURE 2 AUC ON TEST SET SHOWING THE TRUE POSITIVE VS 
FALSE POSITIVE RATE FOR DEEP LEARNING (DL), GRADIENT 
BOOSTING MACHINES (GBM) AND RANDOM FOREST (RF).   

 

 

 

FIGURE 3 TOP FEATURES IN RF MODEL COLORED BY THEIR RESPECTIVE 
FEATURE FAMILY.   

 

 

activation is rectifier f(α) ≈  log(1+eα) .  To minimize the loss 
function we apply a standard stochastic gradient descent with 
the gradient computed via back-propagation. We use dropout 
[4][5] as a regularization technique to prevent over-fitting. For 
the input layer we use the value of 0.1 and 0.2 for the hidden 
layers. Dropout secures that each training example is used in a 
different model which all share the same global parameters. 
This allows the models to be averaged as ensembles, improving 
generalization and preventing overfitting. The split between 
train and test set, as well as the introduced misclassification 
cost for poverty level, are similar to the benchmark models. 

 

 

 

TABLE 3 MODEL PERFORMANCE (AUC)  ON TEST SET 

 

 

 

 

 

IV. RESULTS 
Our deep neural network is trained to separate individuals 

with high and low socio-economic status.  We evaluate our 
models' performance with AUC [2][3] achieving 77% and 74% 
AUC on test set when the classifier is predicting above/below 
median household income and above/below poverty level 
respectively (Fig 2, Table 3). The corresponding AUC on the 
train sets are respectively 80% and 77%, showing that our 
model does not overfit significantly. Our results indicate that 
the DL model achieves a higher performance than those of 
multi-source  RF and GBM models, which vary between 71-
72% and 68-69% for above/below median household income 
and poverty level respectively.  

Next, we feed the RF and GBM models with the same 
representation as fed into the DL algorithm - achieving  RF 
performance of AUC 64% and  GBM performance of AUC 
61% .  The performance of these models greatly suffers as the 
number of input features increase without increasing the 
training size. We conclude that given a fixed training sample, 
the traditional models are not able to learn a complicated 
function that represents higher level extractions, but perform 
better when using manual domain-specific feature engineering.  

 

A posteriori inspection of the top features selected by our 
traditional models leads to some interesting qualitative insights.  
We observe a similar pattern in the top features selected by the 
RF and GBM model.  Figure 3 shows the top features in our 
RF model. We notice the importance of three feature families:  

1) Location dynamics: Where the user spends most of his 
time is  a good signal of his income. This indicates that our 
models have detected regions of low economic development 
status. 

Model AUC test set 

Below/above poverty level  

AUC test set 

Below/above median 
income 

DL 0.74 0.77 

GBM 0.68 0.71 

RF 0.69 0.72 
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2) The handset brand: In the country of our study, 
minimal and more affordable handset brands are very popular 
among the lower income quantiles, while expensive 
smartphones are considered as a huge status symbol.   

3) The top-up pattern: Interestingly, the recharge amount 
per transaction is more predictive than the total recharge 
amount. We observe that individuals from the lower income 
quantiles usually top-up with lower amounts when they first 
fill up their account.  

 
 

V. CONCLUSION 
In order to predict household income based on mobile 

phone communication and mobility patterns, we implemented a 
multi-layer feedforward deep learning architecture. Our 
approach introduces a novel data representation for learning 
neural networks on real CDR data. 

Our approach suggests that multi-layer feedforward models 
are an effective tool for predicting economic indicators based 
on mobile communication patterns. While capturing the 
complex dependencies between different dimensions of the 
data, deep learning algorithms do not overfit the training data 
as seen by our test performance. 

Furthermore, our deep learning model, using only a single 
dimension of the data in its raw form, achieves a 7% better 
performance compared to the best traditional data mining 
approach based on custom engineered features from multiple 
data dimensions. Even though such an automated approach is 
time-saving, many of the classic machine learning approaches 
have the advantage of being interpretable. However, since a 
large portion of a data mining process is data preparation, there 
is a big demand to automate this initial step. 

As future work, we would like to investigate the 
performance implications of including temporal aspects of raw 
CDRs in our models and the data representation.  In addition, 
we will work on finding a general representation of telecom 
data that can be used for various prediction tasks.  

An important application of this work is the prediction of 
regional and individual poverty levels in low HDI countries. 
Since our approach only requires de-identified customer and 
tower IDs, we find this method more privacy preserving 
compared to traditional data mining approaches where the 
input features may reveal sensitive information about the 
customers. 
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