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Abstract— By combining mobile traffic data and product 

adoption history from one of the markets of the telecom provider 

Telenor, we define and measure an adoption network—roughly, 

the social network among adopters. We study and compare the 

evolution of this adoption network over time for several products 

– the iPhone handset, the Doro handset, the iPad 3G and 

videotelephony. We show how the structure of the adoption 

network changes over time, and how it can be used to study the 

social effects of product diffusion. Specifically, we show that the 

evolution of the Largest Connected Component (LCC) and the 

size distribution of the other components vary strongly with 

different products. We also introduce simple tests for quantifying 

the social spreading effect by comparing actual product diffusion 

on the network to random based spreading models. As 

videotelephony is adopted pairwise, we suggest two types of tests: 

transactional- and node based adoption test. These tests indicate 

strong social network dependencies in adoption for all products 

except the Doro handset. People who talk together, are also likely 

to adopt together. Supporting this, we also find that adoption 

probability increases with the number of adopting friends for all 

the products in this study. We believe that the strongest 

spreading of adoption takes place in the dense core of the 

underlying network, and gives rise to a dominant  LCC  in the 

adoption network, which we call ”the social network monster”. 

This is supported by measuring the eigenvector centrality of the 

adopters. We believe that the size of the monster is a good 

indicator for whether or not a product is going to “take off”.    

Social network analysis,Product diffusion, graph theory, 

eigenvector centrality, telecom, social network structure, viral 

spreading, data mining, network visualization, iPhone, iPad,Doro, 

LCC. 
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I.  INTRODUCTION  

This paper is an extended version of [29], where new 
methodology is developed and applied to existing datasets. A 
new longitudinal dataset is also added. The new methodology 
quantifies the social spreading effects for transactional 
products, and is applied on the video telephony data. In 
addition we enrich the paper by adding spreading studies of the 
recent iPad 3G tablet.  

The current study is motivated by the question of how 
people adopt new products and services, and what role the 
underlying social network structure plays in this process. The 

effect of the social network on product adoption and diffusion 
has been well documented in early market research, see e.g [9] 
for an overview of this research. Most of the early studies have 
suffered from limited network data availability, since social 
networks have traditionally been difficult to measure. Several 
theoretical network models have been developed. Some are 
less realistic due to the evolutionary nature and power law 
degree distributions [20][21]. Analyses of more realistic 
models can be found in [14] [22][23].   

In recent years massive social network data have been 
made available to researchers through electronic phone logs 
[3][6][5][7] and online social network services [2][8]. These 
studies have confirmed that “the network matters” when 
customers decide to churn [4][6] and when purchase decisions 
are made [3][12].  Most of the existing research on product 
diffusion on networks has been focused on a single product, 
with a static snapshot of the social network. For an overview of 
analyses of large networks, the reader is referred to [13]-[19]. 
A few papers study the evolution of real-world networks [24]-
[28]. In this paper we will present an empirical study of how 
the social network among adopters of telecom-products 
develops over time. In addition we will show how the product 
diffusion depends on the underlying social network.  

We know that, for many products, a person’s adoption 
probability increases with the number of that person’s friends 
or contacts that have adopted the same product [3][6].  This can 
be interpreted as inter-personal or social influence, and can be 
measured empirically. These measurements do not typically 
say anything about the large-scale structure of the social 
network. In telecommunications it is possible to obtain detailed 
anonymized mobile traffic data for a large connected network 
of users. One can then use this telephony network as a proxy 
for the underlying social network. Studies show that a 
telephony network is a very good proxy for the real social 
network [30]. Furthermore, by combining telephone network 
data over time with the adoption history for a product of 
interest, it is possible to observe how different products spread 
over the social network.  

Using anonymized datasets from one of Telenor’s markets, 
we will show how two different handsets have spread over the 
social network. The cases being used in this study are the 
highly buzzed iPhone, and the less fancy, but user-friendly, 



 

 

 
Figure 1.   iPhone Q4 2007 adoption network. One node represents one 

subscriber. Node size represents downloaded internet volume. Link 
width represents a weighted sum of SMS+voice. Isolates—adopters 

who are not connected to other adopters—are not shown in the picture.  

Doro type handset, which is more common among elderly 
people.  

Both handsets are tracked from their early introduction and 
followed for a period of two years. We also present the 
tracking of a transactional product, mobile video telephony, a 
potentially useful product which allows users to talk to each 
other, while simultaneously viewing one another  (or one 
another’s surroundings)—given certain technological 
preconditions. 

At the end we will show how a computer tablet, specifically 
iPad 3G, is spreading over the  network.  We include this as a 
preview on ongoing research due to the recent introduction in 
the market.  

We start by introducing the adoption network, a 
construction which is readily visualized and which gives 
insight into the spreading of a product or service. Our figures 
will include many visualizations, which, we believe, are useful 
in understanding the product diffusion process on the 
underlying social network. 

II. THE ADOPTION NETWORK 

 
We will in this section define what we mean by the 

adoption network, followed by an empirical example.  

A. Definition of adoption network 

 
We define an adoption network as follows. Given a 

measured telephony network, the node set of the adoption 
network is the set of subscribers that have adopted a given 
product, and the links are the communication links belonging 
to this subset. 

Mathematically, an adoption network is thus a subgraph of 

the whole mobile communication network )( ijcC  , where C 

represents (most generally) a weighted, directed, and possibly 
disconnected graph.  

The mobile communication matrix C places a link between 
each pair of communicating subscribers, so that each nonzero 

element ijc  represents communication. The communication 

can be based for example on a weighted sum of SMS and voice 
duration (in which case we call these weighted links W-links), 
or other transactional data like video telephony traffic. All the 
results in this paper depend only on whether the 
communication link exists or not, without consideration to 
weight or direction. We consider traffic between Telenor 
subscribers in one market, which implies that the matrix will be 

nn  large, where n is the size of the customer base (several 

million subscribers).  

The adoption network is then simply the subgraph of C 
formed by including only the adopting nodes and their 
common links.  As we will see, for a transactional product 
(video telephony), there are two distinct useful choices for the 
communication links to be used in defining the adoption graph: 
(i) the standard (voice + SMS) links, or (ii) the links 
representing the use of the transactional service.  

B. Introducing the “social network monster” by example 

 
Figure 1 shows the empirical iPhone adoption network 

from Q4 2007. (This was measured before the iPhone had been 
introduced into the Telenor net; hence these users have 
presumably bought their iPhones in the US and “cracked” them 
for use on the Telenor net). The data show that 42% of the 
iPhone users communicated with at least one other iPhone-
user, which speaks to the social nature of technology 
consumption, while 58% did not have any iPhone contacts. We 
call the latter isolates. We do not include isolates in any of our 
visualizations of adoption networks, but do include them in all 
results counting number of users. We also study the connected 
components of the adoption network, where the connected 
components are subgraphs in which any two nodes are 
connected to each other by paths. Using this convention, we 
find for example that the largest connected component (LCC) 



 

 

 
Figure 2.    Time evolution of the iPhone adoption network. One node represents one subscriber. Node color: represents iPhone model: red=2G,  green=iPhone 3G, 
yellow=3GS. Node size, link width, and node shape (attributes which are visible in Q3 2007) represent, respectively,  internet volume, weighted sum of SMS and 

voice traffic, and subscription type. Round node shape represents business users, while square represents consumers.  

 
Figure 3.    Time evolution of Doro adoption network. One node represent one subscriber. Node color represents Doro Model: red=HandleEasy 326,328, 

green=HandleEasy 330, blue=PhoneEasy 410, Purple=Other Doro models. Node shape represents age of user: A circle means that user  is older than 70 year.  Link 

width represents weighted sum of SMS and Voice traffic.  

in the adoption network of Figure 1 includes 24.7% of the total 
number of adopters (while representing over half of the nodes 
visible in Figure 1). When the LCC in the adoption network is 
much bigger than all other connected components, and also 
represents a large fraction of all adopters, we will call the LCC 
a “social network monster”. We note that this is not a precise 
definition; but we find that such monsters are typically found in 
adoption networks, and hence believe that the concept is useful. 

III. TIME EVOLUTION OF ADOPTION NETWORKS 

By studying the time evolution of an adoption network, we 
can get some insight into how the product which defines the 

adoption network is diffusing over the underlying social 
network.  In particular we will often focus on the time 
evolution of the LCC of the adoption network – which may or 
may not form a social network monster.  We recall from Figure 
1 that the other components are often rather small compared to 
the LCC. Hence we argue that studying the evolution of the 
LCC itself gives useful insight into the strength of the network 
spreading mechanisms in operation. It also gives insight into 
the broader context of adoption. As described in [12], two 
friends adopting together does not necessarily imply social 
influence – there might also be external factors that control the 
adoption. In this paper we will not try to separate the 



 

 

 
Figure 4.   Time evolution of Mobile Video Telephony adoption network 

(WVAN—where the social links include all communication).  Only two 
quarters are shown due to the fairly stable LCC. Blue node color represents 

enterprise subscribers, while yellow represents private subscribers.  

 
Figure 5.   Time evolution of  the Mobile Video Telephony adoption network. Links are real video links, where width represents duration of video conversations. 

Enterprise adopters have blue node color, while consumer adopters are tagged yellow.   

‘influence-effects’ from external effects such as network 
homophily. Instead, when we observe a tendency that people 
who talk together also adopt together, we will use the term 
‘social spreading’—without making any implicit claim as to 
the underlying mechanism.  

A. The iPhone case 

The iPhone 2G was officially released in the US in late Q2 
2007 followed by 3G in early Q3 2008 and 3GS late Q2 2009. 
It was released on the Telenor net in 2009.  Despite the 
existence of various models, we have chosen to look at the 
iPhone as one distinct product, since (as we will see) the older 
models are naturally substituted in our network. Figure 2 shows 
the development of the iPhone monster in one particular 
market. We observe how the 2G phone is gradually substituted 
by 3G (red to green), followed by 3GS in Q3 2009 (yellow 
nodes). The 2G model falls from 100% to 10% with respect to 
all the iPhone subscribers in the adoption network.  In Q1 2009 
we observe the same amount of  2G as 3G models. 

We show only the LCC in Figure 2 because the other 
components are visually very much like those seen in Figure 1; 
the main change over time is that the non-LCC components 
increase greatly in number, but not in size. That is, essentially 
all significant growth in component size occurs (in the iPhone 
case) in the LCC. We regard this growth as a sign that the 
iPhone is spreading strongly (“taking off”) over the social 
network. It is worth noting that there is a significant marketing 
“buzz” and external social pressure associated with the iPhone 
that is perhaps unique. We will offer in later Sections other 
kinds of measurements which support this conclusion. 

B. The DORO case 

The next example is the Doro. As with the iPhone, there are 
several different models that are considered collectively. It is a 
handset which is easy to use, and mainly targeted towards 
elderly people [10]. Since Doro has a relatively low number of 
non-isolated users in all quarters studied, we present in Figure 
3 visualizations of the whole adoption network (minus isolates) 
over the entire time period, from introduction (in Q4 2007) to 
Q3 2009. Figure 3 shows that most Doro users that are not 
isolates appear in pairs in the adoption network. The social 

network monster never appears—the contrast with the iPhone 
case is striking. We believe that the kind of adoption network 
evolution seen in Figure 3 is indicative of a product where 
“buzz” effects—social influence in the spreading of adoption—
are weak or absent, whereas what we see in Figure 2 indicates 
strong buzz effects. It is possible to argue that the adoption of 
the Doro is more of an individual choice, or perhaps even the 
choice of the user’s children who wish to be in contact with 
their elderly parents. We note finally that the tiny “monster” 
(LCC) seen in Q3 2009 of Figure 3 consists entirely of 
enterprise subscribers. Hence we speculate that these users are 
not the elderly of the target segment, but rather users with some 
other interest in the product. 

C. Mobile Video Telephony case 

Compared to iPhone and Doro, video telephony has no 
value for an isolated user; thus users will always appear in 
pairs. A similar (pairs-only) constraint may be seen in [1], 
where the connections are based on romantic relations.  In the 
video telephony case we actually have two distinct link sets 
which may be used to define an adoption network: W-links 
(voice + SMS), and video links. Thus for mobile video 
telephony we create and study two distinct adoption networks:   



 

 

 
Figure 6.  Fraction of subscribers in components of various sizes in the adoption networks for: (a) iPhone (b) Doro (c) Video (video-links) (d) Video (W-links) 

 The video-link set gives rise to the video adoption 
network  (VAN) 

 The W-linkset (voice+SMS) gives rise to the W-Video 
adoption network (WVAN).  

We find that these two networks for video telephony have 
quite different behavior. We consider first the WVAN. This 
network connects users who (i) have a communication link 
(voice and/or SMS) and (ii) both use video telephony—not 
necessarily with each other. For the WVAN we find 
consistently a large social monster, much like the one seen in 
Figure 2 that starts to form. However, differently from Figure 
2, the monster in the WVAN actually diminishes in size over 
time—both in absolute number of users, and in the percentage 
of users in the LCC. Figure 4 illustrates this by showing two 
WVAN video-monsters which are two years apart.  

We gain even more insight by looking at the time evolution 
of the VAN. Figure 5 shows the time evolution of the VAN-
LCC. We see growth in the monster from Q3 2007 to Q4 2007, 
followed by a rather dramatic breaking down of the LCC after 
that time. Hence we see indications that the service itself had 
the potential to form a real social monster and take off, but 
some change in the service and user conditions killed that 
takeoff – in this case, we have found that a new pricing model 
was introduced. 

D. Comparison of  the social network monsters over time  

Figure 6 sums up much of what we have seen in the 
visualizations of the last subsections. The figure shows the 
fraction of adopters in various components of the adoption 
network. Subscribers in the blue area are adopters which have 
no connection to other adopters. These users (termed isolates 
here, and referred to as singletons in [2]) have not been visible 
in our visualizations. The users in the green area correspond to 
the adopters in the social network monster (there is in every 
case only one component with >1000 users).  

We first consider Figure 6(a), the figure describing iPhones. 
Here we see that the growth of the monster (green), as a 
percentage of the total number of users, has not been 
monotonic. The monster has however grown monotonically in 
the absolute number of users—see again Figure 2. We 
conclude from this that the number of isolated subscribers grew 
more rapidly than did the core. This implies that some change 
in the offering has induced a large growth in the number of 
new users in this period (Q2 2008—Q3 2008). One candidate 
explanation is the appearance of 3G handsets in this time 
period. Another likely explanation for many new users is the 
fact that “legitimate” iPhones were first available on the 
Telenor net at this time.  

Figure 6(b) (Doro) simply confirms the picture seen in 
Figure 3: no monster, essentially no large LCCs. At the same 
time we see an enormous dominance of isolates. This is 
consistent with the hypothesis that Doro users are elderly 
(which we can confirm), and that they speak mostly with other 
generations, ie, non-Doro users. Again, it suggests that the 
adoption of this phone is not based on network influence, but 
on more ego-based considerations.  

Figure 6(c) shows the VAN, while 6(d) shows the WVAN 
for the video product. Again we confirm the qualitative picture 
obtained from Figs. 4 and 5: the WVAN-monster decays 
slowly, while the VAN-monster collapses. In the case of the 
video service, the collapse corresponds to the initiation of 
payment for the system. Using the lingo of the iPhone example, 
this would be the same as turning of the “buzz”. We also see in 
Figure 6(c) a dominance of two-node components—not 
surprising for a transactional service—and a complete absence 
of isolates. The latter result, while not surprising, is not in fact 
guaranteed (for WVAN) by our definitions: we will see two 
isolates in WVAN every time two subscribers use video 
transactions, but have no other (W) communication, and have 
no friends using video transactions. We see that this simply 



 

 

 
Figure 7.   Eigenvector centrality distributions for the whole customer base, Doro users, iPhone users, and video telephony users.  Distributions are from Q3 

2009.  For ease of comparison, the x-scale is normalized so as to run from 0 to 100% for all displayed distributions.   

does not happen—primarily because every pair that uses video 
also uses voice, SMS, or both.  

We offer some quantitative details illustrating the dynamics 
seen in Figs. 6(c) and 6(d). We observe that 95.8% of users are 
in the core of WVAN in Q3 2007, while only 5.7% are in the 
VAN core. Two years later, the corresponding numbers are 
88.7%  for WVAN and  0.76% for VAN.  

IV. CENTRALITY OF ADOPTERS 

We have seen how the iPhone and video adopters form a 
giant monster with respect to the W-links, while the Doro 
adopters do not. Motivated by this, we calculate the social 
centrality for all the adopters in each group, comparing it to the 
centrality of the whole customer base. Our expectation is that  
the involvement of highly central users is essential to the 
development of a large monster. To measure centrality we use 
the well-known eigenvector centrality (EVC). We believe high 
EVC will be strongly correlated with presence in the social 

monster, as it is already known to be correlated with strong 
spreading [11].    

Figure 7 shows the EVC distributions for all the adopters. We 
see that video users are the most central, with iPhone just 
behind. We also see that the Doro adopters are rather peripheral 
socially, with their distribution falling well below that for the 
entire customer base. This supports our expectation that people 
in the giant monsters tend to be more central than the rest of the 
customer base. We believe that one may find, among these 
customers, the influential early adopters—those that adopt new 
products and services fairly early, and stimulate (or perhaps 
demand) others to do the same.   

V. KAPPA-TEST 

In all our results so far we see indirect evidence for social 
spreading effects (or their apparent absence, in the Doro case). 
As another test for social spreading, we introduce a simple 

statistical test, the kappa-test or -test.   

A. Definition of the -test 

 
We consider again the entire social network (as proxied by 

our communication graph) and define two types of links: 

 A-links: links where neither, or only one, of the two 
connected nodes have adopted the product.  

 B-links: links where the two connected nodes have 
both adopted the product.  

We regard B-links to be the links which can indicate (but 
not confirm) social influence.  We also recognize however that 
B-links can arise by other mechanisms, and even by chance. In 
order to evaluate the significance of the B-links that we 
observe in the empirical adoption data, then, we compare the  

empirical number of B-links (call it emp,Bn ) with the number 

found by distributing at random the same number of adopters 
over the same social network, and then counting the resulting 

number of B-links rand,Bn . 

We then define rand,Bemp,B nn . Clearly, if  is 

significantly larger than 1, we have strong evidence for social 

spreading effects. More precisely, >1 implies that people who 
communicate with each other tend to adopt together.  

Figure 8 illustrates what happens when we scatter the iPhone 
adopters in Q1 2009 randomly over the empirical social 
network. The monster is still there, but it is smaller (by more 
than a factor 3) than the empirical monster seen in Figure 2. 
Comparing the corresponding whole adoption networks of 

Figs. 2 and 8 by using the -test, we find that there are over 
twice as many links in the empirical adoption network 

compared to the random reference model—that is,  is 2.18.  
We take this to be evidence that social spreading has 
occurred—more precisely, that people who talk together adopt 
together much more often than chance would predict.  
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Figure 8.   a) iPhone network from random reference model, Q1 2009.        

b) LCC zoomed in   

 
Figure 10. llustration of open and closed triangles. A-C and A-D are 
adjacent links since they share one common node and make an open 
triangle. A-B, B-C and A-C together make a closed triangle.   

 

 

Figure 9.   Kappa for Doro and iPhone 

Figure 8 illustrates an important point which gives insight into 
both monsters and social network structure. The point is that 
monsters arise even in the complete absence of social 
spreading effects. The monster seen in Figure 8 is thus telling 
us something about the structure of the social network itself—
that it has a “dense core” in which a dominating LCC arises 
even in the case of random adoption. At the same time, this 
dense core must include the set of users who give rise to the 
empirical monsters that we observe. The empirical LCC is 
simply larger than the random one (for the same number of 
adopters), due to social spreading (arising from mechanisms 
such as social influence or homophily).  

 

Figure 9 shows the evolution of  over time, both for the 

iPhone and for Doro. We notice that  is very large in the early 
stages of product adoption (eg, around 28.7 for the iPhone in 
Q3 2007). We find this to be typical: the first adopters are not 
randomly distributed, but rather tend to lie in a few small 

connected social groups. The large value for  tells us that this 
observed distribution of the early adopters on a social network 
is extremely unlikely to have occurred by chance.  

We notice also that  is consistently less than 1 for Doro, 

after the early phase of adoption. While we argue that >1 is 
evidence for social spreading effects, we do not believe that 

<1 proves that such effects are not occurring. What <1 does 
say is that adopting friends are found less often than a random 
model would predict. Our explanation for this is that the 
random model hits the dense core more often than the actual 
empirical adopters do. In other words, the empirical adopters 
are socially peripheral. This idea is in agreement with the EVC 
distribution seen in Fig 6.  

Finally we note that our test is not performed for the 
video adoption network in this chapter. The reason is that (as 
discussed in Section III) the transactional nature of the video 
service constrains both VAN (exactly) and WVAN 
(empirically) such that there are no isolates. This constraint is 

not captured by the random reference model of the test. The 
purpose now is to introduce a link-based version of the node-
based kappa-test.  

VI. LINK BASED KAPPA-TEST. 

The kappa-test defined in V considers products which are 
adopted nodewise, like e.g. the adoption of handset. In the case 
of transactional products like videotelephony, product adoption 
is defined in a pairwise manner: the nature of the product is to 
activate links on the social network. We consider 
videotelephony as a link-based product. The spreading process 
of a link-based product will be different compared to a node-
based product, and hence the random spreading model in the 
kappa-test has to reflect this. In the node-based kappa-test the 
nodes are spread randomly and then the resulting links are 
compared to the empirical number of links between adopters. 
For link-based products, we suggest a random model where 
links in the social network are randomly activated. 

We suggest the following for a link-based kappa-test: We 
start from the underlying social network, and track the time-
evolution (adoption) of a link-based service; e.g. MMS or 
video telephony. In other words; a link-based service is a 
service in which the adoption requires both end-points of a link 
to adopt the service. Both nodes at the end-point of a link are 
mutually depending on each other in starting using the link-
based service—communicating with each over the link. The 
link adoption of the network-based service, also gives rise to an 
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adoption network. 

Again, we are interested in measuring ‘adopting together’, 
so for links this is interpreted as meaning that two links have 
adopted together if they have a common node as end-point.  In 
other words; two links are said to adopt together when the two 
links are adjacent. Fig 10 illustrates how we count adjacent 
links, two links A-C and A-D define an adjacent pair of links, 
since the node A is a common node for both links. Counting 
the number of open triangles in the adoption network then 
measures the occurrence of links adopting together. The 
random adoption network is generated through randomly 
choosing the links to adopt the link-based service from the set 
of possible links in the underlying social network, and the 
number of open triangles is then counted in the random case. 
We suggest then to define the link-based kappa test as;  



The above framework can now be used for generating 
kappa tests for comparing the empirical and random occurrence 
of links and adjacent links in the true adoption network and a 
randomly simulated adoption network, respectively. These 
adoption networks are considered relative to the underlying 
‘true’ social network that can be measured. Summarizing, we 
have the following two kappa tests: 

 Node based adoption, counting links:  = empirical 
number of links / random number of links 

 Link based adoption, counting open triangles:  = 
empirical number of open triangles / random number 
of open triangles.  

We count the total number of open links in the network 
using the binomial coefficient and sum over all nodes i: 

 

where ki is node degree, n is the total number of nodes, and L is 
the number of links – all measured relative to the adoption  
network.  

From the above discussion, it is also possible to consider 
other types of kappa-tests. For example, one can envision 
kappa-tests that compares; 

 The number of closed triangles to the number of 
random triangles. 

 The number of closed loops of some order to the 
number of random closed loops.  

The idea is to consider local network structures, and how 
these local structures potentially ‘adopt’ together.  

A. Quarterly development of the link kappa. 

 
From figure 11 we see that the link kappa value defined in  (1) 
is steadily increasing from around 15 to about 20. A kappa 
value of 15 means that there is 15 times as many adjacent links 
in the empirical data than in the random reference case! We can 
then conclude that the distribution of video usage on the social 
network is far from a random process where social relations are 
randomly ‘activated’ to become video links.  

 The number of adjacent links is related to the node degree 
according to (2).  Figure 12 shows the degree distribution for 
Q3 2009 – both for the random ‘link activation’ model and for 
the real empirical video adoption network (VAN). As expected 
from the high link kappa value, the degree of the nodes in the 
empirical adoption graph is higher than in the corresponding 
random model (higher number of adopting neighbors means 
higher number of adjacent links). In the random case around 
90% of the nodes have degree 1 – the least degree possible 
since the unit we use in this experiment is links. An isolated 
link will give both end nodes degree 1. This is expected, since 
the random model does not take into account that the 
videotelephony users, once they have started using the service, 
will use the service to communicate with more than one 
network neighbor. A more sophisticated random reference 
model could also take this into account. The simple random 
link activation model acts as basic reference and assigns the 
same activation probabilities to all links on the network. We 
reserve testing more advanced reference spreading models for 
future work. 

 

Another way to measure clustering among adopters is to use 
the global clustering coefficient defined as total number of 
closed triplets divided by the total number of adjacent links. 
See e.g. reference [13] for a detailed discussion of the global 
clustering coefficient. Using the same ‘kappa’ logic as before, a 
completely random adoption process will also show some 
clustering. To compensate for this effect, we use the kappa test 
logic on the global clustering coefficient and define a new link 
kappa measure as Cemp/Crnd, where Cemp is the clustering 
coefficient calculated from the empirical network and Crnd is 
calculated from the random video adoption network. Figure 13 
shows the development of the ratio Cemp/Crnd.  

 



 

 

 
Figure 14.   Adoption probability pk vs the number k of adopting friends, for 

three products. In each case we see a monotonic growth of pk with k—

indicating that some kind of social spreading is occurring. 

 

Figure 12 Node degree distribution for the ‘random link activation’ 
reference model and the empirical video adoption network (VAN), Q3 
2009. 

 

 
 

Figure 11 Historical development of link kappa for video telephony.  
Link kappa is defined as the number of total adjacent links in the 
empirical data to the number of adjacent links in the random reference 
case. The random reference network is constructed by choosing an 
equal number of links randomly from the underlying social network 
and then count  the number of adjacent links. 

 

 
Figure 13 Clustering coefficient kappa test defined as the empirical global 
clustering coefficient divided by the global clustering coefficient for the 
random network. The global clustering coefficient is defined as total number 
of closed triangles divided by the total number of adjacent links in the 
network.  

In summary – measuring the social network dependence on 
video telephony is more difficult than measuring effect on node 
attributes like choice of handset. Video telephony is a link 
attribute involving choices of both end nodes. A simple 
reshuffling of individual adopter status will not take this into 
account. Our simple link kappa test can be used for quantifying 
network dependent adoption for services of a transactional 
nature. In the case of video telephony we find that the 
empirical relations are clustered on the social network 
compared to a random link activation model. 

 

VII. CORRELATED ADOPTION PROBABILITY 

Our final test for social spreading effects is to measure the 

probability pk that a subscriber has adopted a product, given 

that k of the subscriber’s friends have adopted the product. 

This conditional probability does not indicate causation, 

because it makes no reference to time order—it simply 

measures (again) how strongly those that communicate 

together tend to adopt together. We measure pk simply by first 

finding all subscribers with k adopting friends, and then 

finding the fraction of these that have themselves adopted.  

 

Figure 14 shows pk vs k for the three products, for 0 ≤ k ≤ 3. 

For higher k, the Doro data are too dominated by noise (a low 

n) to be useful. (The results for iPhone and video have better 

adoption profiles, and so are meaningful at least out to k=10; 

but their qualitative behavior—monotonic increase, at roughly 

constant slope, with increasing k—is like that seen in Figure 

14.) Figure 14 supports our claim that there are some social 

spreading effects operating on Doro adoption—since we see a 



 

 

 
Figure 15.    Time evolution of iPad 3G adoption network. One node represent one subscriber. Blue node color represent an iPad 3G user which also uses 

an iPhone, while  red color represent an iPad 3G user with another handset.   Link width represents weighted sum of SMS and Voice traffic. Isolates are 

not included in the visualization.  

steady increase of pk with k. Such effects are not visible from 

our  test, for reasons given above; yet we see for example 

that, if we know that a subscriber has one friend using a Doro 

phone, that subscriber’s probability of using one him- or 

herself is roughly twice the adoption probability for a 

subscriber with no adopting friends. 

 

The iPhone and video pk results lie, not surprisingly, 

considerably higher than the Doro curve. This is consistent 

with our claim that social spreading effects are much stronger 

for these products. For example, knowing that a person has 

one friend using an iPhone roughly triples the probability 

(compared to someone with no adopting friends) that this 

person also uses an iPhone. This comparison is however not 

possible to make for the video service, because the probability 

of using video telephony and having no (W-)friends who use 

video telephony is (as discussed above) empirically zero. 

Otherwise the video results are qualitatively the same as the 

iPhone results.  

We also note that the pk  for video-telephony is consistent with 

the degree distribution for video adopters in figure 12, where 

we see that the nodes in the empirical VAN generally have a 

higher degree than expected from the simulated random link 

activation model. Since the adoption probability, pk,  increases 

with number of adopting neighbors, one will expect a higher 

number of activated neighbors in the adoption graph compared 

to a random model. A higher number of neighbors will again 

result in a higher number of adjacent links in the empirical 

data and thus the high link kappa value we see in figure 11. 

 

VIII. TIME EVOLUTION OF COMPUTER TABLET ADOPTION 

NETWORKS 

Until now we have looked into the social interaction 
between users of different handsets, as well as   video 
telephony. Recently, so called computer tablets, such as Apple 
iPad 3G and Samsung Galaxy Tab, have received increased 
attention. These tablet computers are particularly marketed as a 
platform for audio and visual media such as books, periodicals, 
movies, music and games, as well as web content. As a 
preview of current research we will show the social network of 
iPad 3G-adopters, and its time-evolution from its release date, 
as well as some early statistical results. We are not able to 
study uptake of WiFi-only tablets, since we depend on a SIM 
to map tablets to the social network. Computer tablet networks 
address some fundamental differences from the adoption 
networks already mentioned. An important difference from 
traditional handsets is that the SIM card placed in a tablet is not 
necessary the same SIM card which is being used for social 
interaction, It is typically a “twin SIM” solution, where a 
customer gets two SIMs on the same subscription. We use the 
SIM in the traditional handset as the node and map the social 
network. This will give us a picture of the social interaction 
among iPad 3G users. We will show that the ‘non-pad’ SIM 
cards are most often placed in an iPhone.  

IX. IPAD 3G ADOPTION NETWORK 

 
As with the iPhone, the release date of iPad 3G varies with 

region  - it was officially released in the US Apr 3
rd

 2010.  In 
Telenor net it was released in November 2010. As the 
visualizations will show, thousands of users bought their iPad 
in the US and used it on Telenor net before they actually were 
officially released by Telenor in November 2010. Since such 
tablets are quite new in the given market, we have chosen to 



 

 

 

 

Figure 16.    Kappa for iPad 3G  

 
Figure 17.    Adoption probability pk vs the number k of adopting 

friends, for iPad 3G. We observe a monotonic growth of pk with k—

indicating that some kind of social spreading is occurring. 

study the time evolution with a more fine-grained granularity - 
month by month. 

 Fig 15 shows the time evolution of the iPad 3G adoption 
network  for the first seven months. The structure reminds us of 
the iPhone evolution. We have here also included smaller 
social components, but for visualization purposes we have not 
included the isolates (iPad 3G-adopters with no iPad 3G 
friends), but we remind the reader that these are also part of the 
adoption network. From the visualization we see how the 
largest connected component gradually turns into a “monster” 
within a couple of months.  When a specific iPad-user also uses 
an iPhone, the node is colored blue. Visually it is seen that the 
connected iPad-users have a high percentage of iPhone’s.  In 
general we find that 53.4% of the users also are using iPhone 
for social interaction. We observe that in the cases where the 
iPad-user has at least one iPad-friend (adopters shown in Fig 
15) there are as many as 72.1% also having an iPhone. The 
remaining users, which represent the disconnected users in the 
adoption network (isolates),  there are only 38.6% which have 

adopted an iPhone. This shows that  iPhone is much more 
common phenomena in socially connected groups of iPad 
users.  This also supports the idea of an Apple “tribe” of users. 

X. KAPPA-TEST FOR IPAD 3G 

 

As stated in section V,   implies that people who 

communicate together also tend to adopt together. Figure 16 

shows the time evolution of  for iPad 3G. We notice that it is  

significantly above 1 , which indicate strong evidence for 

social network effects. varies between 16.9 and 72, which 

means that at most there are 72 times more empirical iPad-

relations compared to the relations we find when spreading the 

adopters randomly on the whole communication network.   

We notice that the numbers are significantly higher than for 

iPhone – and from the perspective of  this trend supports 

that the spreading is stronger compared to iPhone, which is 

also reflected through the number of sales [31].  

The rapid increase of kappa from May to June can be 

explained by the time it takes from the first adopters got their 

pads until friends are influenced and are able to get one. It is a  

product of how the individuals got their iPads since it involved 

travel to the U.S. or knowing a friend who was traveling there. 

The  decrease from june can be due to increased exposure 

of the product in the media which can lead to less dependence 

on social spreading, in combination with the increased number 

of sales.  Due to the nature of  it will approach 1if we have 

complete saturation of iPads in the market.   

XI. IPAD 3G ADOPTION PROBABILITY 

 

Fig 17 corresponds to the correlation adoption probability 

which we measured in section VI. We measure the probability 

pk that a subscriber has adopted iPad 3G, given that k of the 

subscriber’s friends have adopted iPad 3G. The results shows 

that if you have one iPad friend the probability to adopt iPad is 

14 times higher than with zero friends. If you have 2 friends 

the probability is 41 times higher, 3 friends 96 times. We 

observe a steep monotonic growth which should indicate 

strong social spreading effects.  The adoption is highly 

dependent on the number of friends.  

 

 

XII. SUMMARY AND FUTURE WORK 

All of our results support a simple and fairly consistent 
interpretation: 

 The iPhone  has very strong social spreading, and 
has truly taken off  

 The Doro handsets have only very weak social 
spreading. This device will probably never take 
off in the same sense as the iPhone. 

 Video telephony use also has strong social effects, 
and started spreading very strongly; however its 
early takeoff was stopped by an external factor—
here,  a new price model. 

 Preliminary results from studying the newly 
released iPad 3G reveals even stronger network-
dependent adoption patterns than iPhone.  



 

 

Standard whole-network measures, such as total number of 
users, or total traffic over time, can also give useful 
information on these same questions. We believe however that 
our measurement methods give new and useful insight into 
how and why these services have performed so differently.  

We have also constructed two different link-based -tests for 
the VAN, because the VAN has a fundamental constraint—that 

adoption occurs only in pairs—that our simple -test does not 

capture. We conclude from these -tests that the remaining 

subscribers are well clustered due to the increase of  over time 
– both for the test based on the clustering coefficient and 

based on adjacent links. These tests should be useful for any 
transactional graph with the pair constraint.   

Also, we suspect that social spreading effects for the Doro 
handsets may be more visible at the two-hop level. A typical 
scenario might be an adult child would buy this type of phone 
for one or more of their elderly parents when, for example, use 
of a more traditional mobile phone becomes difficult because 
of the size of the display or keypad, or the complexity of the 
device. In such a scenario, it may well be there is little or no 
direct communication among the adopters, but a strong two-
hop connection via the younger generation. We plan to test this 
idea in the near future. 
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