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Motivation  

•  One of the most promising rich Big 
Data sources is mobile phone data 

•  Mobile phone data can give us new 
insight into human sociology 

•  Traditionally mobile phone data has 
mostly been used for billing the 
customers and network maintenance.   

•  Untapped potential 

Lazer, D. et al (2009). Computational social science. Science, 323, 721�723.  
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A number - Caller 

IMSI: SIM card 
Cell_ID: Location 

TAC: Handset 

Type: Call, SMS, 
Data, etc 

Date & time 

B number – 
Receiving party 

Data volume 

Billions of data points collected each day  
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Main methodology 

Descriptive 

Prediction 

Apart from providing basic 
communication services, what 
kinds of positive impacts can we 
create for society or individuals 
using large-scale mobile phone 
datasets? 

Research objective 
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Illiteracy 
 
 
Income  
 
 
Poverty 
 
 

 
 

Socioeconomics 

•  Lacking official statistics in 
developing countries 

•  Evaluate if mobile phone data 
can complement official 
statistics 

•  Evaluate different metrics     
and methods   

Research challenges  

Prediction 

Main methodology 
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Mobile phone input features 

Top illiteracy predictors  

1.  Location 
2.  Incoming SMS 
3.  Entropy of contacts  
4.  Internet volume 
5.  Number of places 
6.  Interactions per contact 
7.  Recharge amount per transaction 

Approach 

Survey 
+ 

Mobile  
data 

Prediction 

70.1% 
Accuracy 

Algorithm  

Gradient Boosted Trees  

Predicting illiteracy 
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PREDICTION 

Survey data   
•  Income survey 
•  DHS 
•  PPI 

•  Poverty levels  
•  Prediction maps  

Satellite layers 
•  Population 
•  Aridity index 
•  Evapotranspiration 
•  Various animal densities 
•  Night time lights 
•  Elevation 
•  Vegetation 
•  Distance to roads/waterways 
•  Urban/Rural 
•  Land cover 
•  Pregnancy data 
•  Births 
•  Ethnicity 
•  Precipitation 
•  Annual temperature 
•  Global human settlement layer 

Mobile phone data 
•  Aggregated anonymized 

non-personal information 
•  E.g. average recharge 

amount per tower 

Predicting poverty 
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Dhaka city  
~ 1500 mobile towers 

The coverage area of towers are approximated with Voronoi-like tessellation  
Okabe, A., Boots, B., Sugihara, K. and Chiu, S.N., 2009. Spatial tessellations: concepts and applications of Voronoi diagrams (Vol. 501). John Wiley & Sons. 
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Models employing a combination 
of satellite and mobile phone 
variables provide the highest 
predictive power with lowest 
uncertainty with R2=0.78 

= Poorest areas (Wealth index) 

•  Nighttime lights 
•  Enhanced Vegetation index 
•  Elevation 
•  Transport time to closest urban settlement 
•  Recharge average per tower 
•  Percent nocturnal calls 
•  Outgoing internet sessions 
•  count incoming VAS 
•  Recharge amount per transaction 
•  Count incoming texts  
•  Weekly recharge amount  

Top predictors 

Satellite  

Mobile 
phone  

Algorithms 
 
•  General linear models (GLM) 
•  Hierarchical Bayesian geostatistical 

models  (BGM)  

(c) Copyright Pål Sundsøy, 2017(c) Copyright Pål Sundsøy, 2017(c) Copyright Pål Sundsøy, 2017(c) Copyright Pål Sundsøy, 2017



 
•  Evaluate if mobile phone 

data can give better insight 
into social patterns during 
disasters 

•  Evaluate if behavioral signals 
may provide insights into 
damages and where the 
vulnerable population is 
located  

Research challenges 

Disasters 

 
Terror 
attack 
 
Cyclone 
disaster  

Main methodology 

Descriptive 
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Voice calls minute by minute 

Friday Thursday Wednesday Saturday 
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Oslo terror attack, 22nd July 2011 
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15:26: ~ 10 000 calls/min 

16:00 ~  20 000 calls/min 
(peak) 
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Voice calls minute by minute 
Oslo terror attack, 22nd July 2011 
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The ‘heartbeat’ of Bangladesh  

= Normal top-up activity 
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•  Evaluate if mobile phone data 
can be used to understand how 
products spread over large-scale 
social networks  

 
•  Evaluate if product uptake can 

be increased by incorporating 
social effects 

•  Evaluate how data-driven 
marketing benchmark against 
marketers’ gut-feeling 

Research challenges 

Product uptake  

Main methodology 

Descriptive 

Prediction 

Product 
spreading 
 
Data-
driven 
marketing 
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Research on human interactions: By analyzing anonymized CDR-data we 
can map out a proxy for the social network among our customers 

Social connection 

(built from traffic data) 
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Research on human interactions: By analyzing anonymized CDR-data we 
can map out a proxy for the social network among our customers 

Social connection 

(built from traffic data) 
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Q407 Q108 Q208 Q308 Q307 

2G release in US 
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The predictive model learns from existing cases of data 
conversion 

Non-convertors 
‘negatives’ 

Natural Data 
Convertors 
‘positives’ 

2-6 months back: Use Historical data 

Non Data 
Customers 

today 

Create model 
Find patterns 
identifying the data 
convertors based on 
historic data 

Model 
deployment 
Use the patterns to 
identify likely adopters 

Identify and run 
campaign on 

200k most likely 
adopters 

Today: Present time data 

Offers are 15 MB & 99 MB data packages offered for half-price  

300 variables 

40M customers 

Data-driven approach: Who are most profitable targets for SMS campaign? 
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Algorithm used is Bagging Trees  
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The prediction model outperforms existing best practice 
approach with  13 times better performance 

99% Renewal– the algorithm is optimized to avoid ‘freeriders’ 

Top predictors 

Prediction  
Model 

Current best practice 
Microsegmentation 
approach 

15 mb data package 

(c) Copyright Pål Sundsøy, 2017(c) Copyright Pål Sundsøy, 2017(c) Copyright Pål Sundsøy, 2017(c) Copyright Pål Sundsøy, 2017



Validation 

Scoring 

The Predictive Model is not 
a ‘black box’, but 
algorithms put together 
and tuned 

Final Output  

Complex 
historic data 
input 
 
  

•  This is the actual 
model for this 
pilot 

•  All the boxes are 
model interaction 
points  

•   80% of the work 
is data 
preparation 

Model Training 
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The greater ‘Big Data’ perspective  

Mobile phone data 

Social Media  

Financial data 

UN Data 

Satellite  

Surveillance 
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App 
data 

Telecom 
operators 

Drones 

Sources of behavioral data 

Sensors 

Enterprise  
e-mail data 

1.  Lazer, D. et al (2009). Computational social science. Science, 323, 721�723. 
2.  Golder, S. and Macy, M., 2012. Social science with social media. ASA footnotes, 40(1), p.7 
3.  Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C. and Byers, A.H., 2011. Big data: The next frontier for innovation, competition, and productivity 
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Privacy is important!  
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Conclusion 

 
1.  Inform socially beneficial policies  

 
2.  Provide insights into human behavior, 

with the aim of gaining: 
 

I.  A better understanding of human 
behavior and interactions 

 
II.  Better insights into human behavior 

to improve marketing  

 
 
 

Mobile phone data is useful to : 
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